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Local Support Bases for a Class of Spline Functions
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Bases for a class of splines consisting piecewise of elements in the null space
of a linear differential operator L with the component pieces tied smoothly
together at the knots by requiring the continuity of certain Extended-Hermite­
Birkhoff linear functionals are obtained. In particular, first, certain one-sided
splines are constructed as linear combinations of an appropriate Green's func­
tion, and then local support splines are constructed as linear combinations of
the one-sided splines. Finally, local support bases for a finite-dimensional space
of splines are obtained.

1. INTRODUCTION

The purpose of this paper is to construct local support bases for spaces
of spline functions where the splines consist piecewise of elements in the
null space of a differential operator L with the component pieces tied smoothly
together at the knots by requiring the continuity of certain Extended­
Hermite-Birkhoff linear functionals. In order to proceed directly to a precise
definition of the class of splines under consideration, we defer a discussion
of previous work on local support splines to Section 5. We mention here
only that such local bases are of use in collocation methods for the numerical
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solution of linear boundary-value problems [8], as well as in the construction
of local approximation schemes [9, 13].

Let ... < X-I < Xo < Xl < ... be a bi-infinite set of distinct real numbers.
Suppose % = span{ulx)};~l is the null space (or set of fundamental solu­
tions) of an nth-order linear differential operator L with leading coefficient 1.
Suppose for each v that Av = {A'v,}1~1 is an Extended-Hermite-Birkhoff
(EHB-) set of linear functionals with support at Xv; i.e.,

i = 1, 2'00" lv,

where e~)cp = cp<il(xv). We assume that the AV1 '00" Av! are linearly inde­
pendent in the sense that the matrices Tv = (Yvij)~~r.j~OVare of full rank Iv.
We are interested in determining local support bases for the class of splines

for some Sv E %, all v,
(1.1 )

i = 1,2,... , Iv},

where Iv = (xv, Xv+l)' The differentiations implicit in evaluating the Av, on
Sv-l and Sv are to be understood as the left and right derivatives at Xv,
respectively.

The class of splines Y in (1.1) is quite general. It includes, for example,
g-splines, L-splines, Lg-splines, and the generalized splines of Greville [7]
and Jerome [9] (and thus the various polynomial-, trigonometric-, expo­
nential-, and hyperbolic-splines, etc.). For other examples, see Section 5,
and in particular, Remark 8 there.

We caution the reader not to confuse the sets Av of EHB-functionals
describing smoothness of the splines in Y with the sets of EHB-functionals
which are often used to impose interpolation constraints in variational
problems; they are in a sense dual sets. Specifically, for classes of splines
arising from variational problems, the sets Av will include lower-order
smoothness functionals as well as certain adjoint natural boundary func­
tionals involving higher-order derivatives. We also note that in the definition
of Y we leave the value of the splines at the knots undefined (we could
adopt the convention that s(xv) = sv(xv), for example).

2. SPLINE BASES WITH ONE-SIDED SUPPORT

In this section we introduce some splines in Y which will be the basic
building blocks for local support splines. We need to introduce certain
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Green's functions associated with L = Dn + r.::o1
a;(x) DJ.

ai E Cn(IR), j = 0, 1,... , n - 1. Let L, and L, * be defined by

L.f{! = f{!(i) + an_1f{!(i-1) + ... + an-if{!,

L;*f{! = (-l)i f{!(i) +(_1);-1 (an- 1f{!)(i-1) + .. ,+ an-,f{!,

Suppose

(2.1 )

for i = 1, 2, ... , n. For convenience set Lo = Lo* = I, the identity operator.
L i * is the formal adjoint of L i , and L n = L.

We denote by {Vi(Xm:1 the set of adjunct functions for L (cf. Greville [7]);
they form a fundamental system for L * (i.e.. a basis for the null space of L *)
and are characterized by

n

L U~k\X) vlx) = 0",n-1 .
i~l

This relation implies (cf. the Appendix)

n

L U~k}(X) L:-i-1vlx) = Ok,i ,
~=1

k = 0, 1,.. " n - 1.

k = 0, 1, ... , n - 1,

(2.2)

(2.3)

for j = 0, 1, , n - 1. Notice that statement (2.3) is precisely the statement
that W-1(U1 , , un) is the matrix (Wi/) = (L~_ivi)' where the (i,j) entry of
W(u1 , ... , un) is U}i). Now for j = 0,1, ... , n - 1, define

n

8ix; g) = L Ui(X) L:-i-1vM) = L:_H 8n_1(x; g), (2.4)
.~l

where L~-i-1 operates on the gvariable. Clearly, for j = 0, 1, ... , n - 1,

k = 0, 1"", n - 1, (2.5)

so that the functions

x;> g,
x < g, (2.6)

possess jumps of 0k,5 in their kth derivatives at g, for j, k = 0, 1,... , n - 1.
These functions are thus similar to the Green's kernel for initial value
problems, and in fact, On-l is the usual such Green's function. Moreover,
Ov(x; g) = (x - g),,+/v!, v = 0, 1,... , n - 1, for L = Dn.

Although the functions Oix; xv) are zero for x < Xv and are restrictions
of functions in ,AI' for x > xv, they are not necessarily in !/ because they
may fail to satisfy the required ties at Xv . However, by taking linear combina­
tions of 00(-; xv),"" On-k; xv), we can produce mv = n - Iv linearly inde­
pendent spline functions in .'7" with knot at x,.. We have
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LEMMA 2.1. Suppose the matrices Tv = (Yvij):~~~~o in the definition of.'1'
are offull rank Iv. Let lX,1 .... , lXvm be mv = n - I, linearly independent vectors
in IRn which satisfy v

k = 1, 2'00" mv • (2.7)

Then, with lX,k = (lX',k.O , ... , lX,'.k.n-l)T, the functions

n-l
Pvk(X) = L lXvk"a,,(X; xv),

,,~o

k = 1,2.... , mv , (2.8)

are m, linearly independent splines in .'1'. Moreot·er, each of them is identically
zero for x < Xv .

Proof Clearly, Pvk has the correct piecewise structure; i.e., it is zero for
x < Xv and is an element of ,Ai' fbr x ~ Xv' Since (2.7) forces the required
continuities at the knot Xv, P,k EO .C/'. Now if

m~, n-l mv

o = L dI.Pvk(x) = L aix; xv) L dklXvki'
k~1 )~o 1.~1

then a nontrivial linear combination of {a)}f:01would be zero if some dk #- O.
Thus, the constants dk must be 0, and the {Pvk}~~l are linearly independent. I

By (2.4), (2.6), we may write (2.8) as

where

p,j(X) = 1°[, ( ) ( )]C! U1 X , ... , Un X vj ,

n-l
L lXvj"L~_l_"I\(XJ

,,=0

(2.9)

(2.10)

n-l
L lXvj"L~_I_"VnCXv)
,,~o

3. LOCAL SUPPORT SPLINES

In this section we show how local support splines can be constructed as
linear combinations of the one-sided splines described in Lemma 2.1 and
Eqs. (2.9) and (2.10).
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At times it will be convenient to have a single subscript ordering of the p's.
We define

... , P-l , Po , PI,'"

to be the lexicographical ordering of

... , PO.l ,... , PO.mo ' Pl.l ,... , Pl,m, ' P2.l ,...

with the identification PI = PO.l' We use both index schemes in the sequel.
We will also write

... , C_l , CO, C l , ...

for the corresponding lexicographical ordering of the vectors C vi corre­
sponding to Pvi in (2.9) and (2.10).

LEMMA 3.1. Suppose for some il < i2 < ." < iq and some OT =
(01 ,,,,, Oq) E IRq that Co = 0, where Cis the n X q matrix C= (Ci ,Ci , ... , Ci ).

1 2 q

Then
q

B(x) = L O"PiJX)
,,~l

(3.1)

is a spline in Y. Moreover, if Pi is associated with the knot Xl and P, is
1 q

associated with the knot Xr , then B(x) is identically zero outside of [X! , xr].

Proof Clearly, BEY since {Pi }v C Y. Moreover, Pi (X) = 0 for X < X!,
v 1

and by the ordering, the same is true for Pi ,... , Pi . Thus B(x) - 0 for
2 q

X < Xl . Now for X ~ Xr , each of the functions P, is given by (2.9); i.e.,
"

Pi/X) = [ul(x), ... , u..(x)]Ci" ' JL = 1, 2'00" q,

and so
B(x) = [ul(x), ... , u..(x)] Co == O. I

We should emphasize that in Lemma 3.1 the ordering is only a convenience.
Moreover, the integer q might take on any value greater than 1; i.e., for
general n it may be possible to construct local support splines with as few
as two one-sided splines and with support on only one interval [Xl' XI+1]
(cf. Section 5, Remark 8). For the more usual classes of splines one needs
q > n, however.

The spline (3.1) is a general analog of the classical B-spline of Curry and
Schoenberg [1]. To see the connection with the polynomial spline case, we
note that if L = Dn, then L i = Di, L i* = (-I)i Di, and .AI = .AI* =
span{l, X, ... , x n- l }.
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4. A FINITE-DIMENSIONAL SPACE OF SPLINES AND A CORRESPONDING BASIS

Let Xo < Xl < '" < Xk < Xk+1 be prescribed. For v = 1,2,... , k let
Av = {'\i} ~~l be EHB-sets of 1 ~ Iv ~ n linear functionals with support
at Xv . Let .AI be the null space of a differential operator L as in Section 1.
With L1 = {Xl"'" xd and A = {Al ,... , A k } we define

for some Sv E.AI, v = 0, 1, ... , k,

i = 1,2,... , Iv ; v = 1,2,... , k},

where as before, Iv = (xv, Xv+1), v = 0, 1'00" k. We have used the symbol Yp
here to distinguish this finite-dimensional space of splines on [xo , Xk+1]
from the infinite-dimensional space Y considered earlier.

We begin by showing Yp is (K + n)-dimensional, where K = "I.~~l mv

and mv = n - lv, v = 1,2,... , k. Tn fact, we provide a basis for Yp. Let
mo = n, and define

C = [L~lVl(XO)]OJ , j = 1,2,... , n.
L;_lVn(Xo)

Now let {PvJCx)}~="i~=o be defined by (2.9) and (2.10).

THEOREM 4.1. 9'p(L1; A;.AI) is (K + n)-dimensional (K = "I.~~l m.) and
is spanned by

(4.1)

Proof. Every spline s E 9'p has a representation

X E Iv, v = 0, 1, ... , k.

Since the n(k + 1) coefficients are constrained by ~=llv linearly independent
linear conditions, we conclude that 9'p is of dimension n + K. By Lemma 2.1,
{Pvj}~i C .'/' and are linearly independent, v = 1,2,... , k. Clearly, {Poi};'02l C ,9',
and are linearly independent since COl ,..., Con are linearly independent. It
remains to show that the entire collection (4.1) is linearly independent.

Suppose °= "I.:=o "I.::-l dvJPvi' Then °- "I.7~l doiPoJCx) for X < Xl (since
the other P's are zero by their support properties). By the aforementioned
linear independence of {POi}~l' we conclude that dOl = ... = don = O. We
are left with °= "I.~\ dliPli(x) for X < X2 , which implies dll = .. , = dlm = O.

- 1

The process can be continued to show all of the d's are 0. I
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We write PI, ..., PK+n for the lexicographical ordering of the splines (4.1),
and let C1 , ..• , CK+n be the corresponding ordering of the Cvi for which (2.9)
holds. Our aim is to construct local support bases for Yp by taking linear
combinations of PI'"'' PK+n . First we note

LEMMA 4.2. Let f31 ,... , f3r be r linearly independent vectors in IRK+n.
With f3v = (f3V1 ,... , f3vK+n), let

K+n
Bv(x) = L f3v,.pix),

,.=1
v = 1,2,... , r. (4.2)

Then {BV};=l is a set of r linearly independent splines in Yp.

Proof If

then the linear independence of the p's (cf. Theorem 4.1) implies°= L:;=1 dvf3v. But then the linear independence of the f3's implies
d1 = ... = dr = 0. I

Clearly, if we can find r = K + n coefficient vectors in Lemma 4.2, then
(4.2) will be a basis for Yp. Since we want a local basis, we should choose
these coefficient vectors with Lemma 3.1 in mind. The idea is to find K + n
linearly independent f3's while still keeping the supports of the resulting
basis splines small. How successful this will be depends on the properties of
the matrix C = (C1 , ... , CK+n)' The following theorem gives a condition on C
which suffices to construct a basis for Yp consisting of splines with supports
on at most n intervals between the knots. We will use the notation C<i,j> to
denote the submatrix of C obtained by taking columns i through j, where
1 ~ i < j ~ K + n. We also find it convenient to introduce the notation
E"o = 0, E"v = E"v-1 + mv- 1 , v = 1,2,... , k + 1.

THEOREM 4.3. Suppose that,for v = 0, I, ... , k - n,

C<E"v+1 + I, E"v+n+1> is offull rank n.

Then there exists a basis {Bv}~':in for Yp such that

(4.3)

B'v+1 , ... , B'v+mv have support on [x. , x.+n],

B'v+1 ,..., B••+mv have support on [xv, Xk+1],

v = 0, 1,... , k - n, (4.4)

v = k - n + I,... , k. (4.5)
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Proof For v = 0, 1, ... , k - nand j = 1,2,... , mv choose /3. +i to be the
K + n vector with (Ev + j)th component equal to 1; the EV+1 -+ 1, ... , Ev+n+l

components equal to 8, where 8 is any solution of

and the remammg components zero. By Lemma 3.1 the corresponding
B's (defined by (4.2») have the stated support properties (4.4). For
v = k - n + 1, ... , k, and j = 1,2,... , mv , let /3. +i be a K + n vector with
(Ev + j)th component equal to 1 and the other c~mponents 0. Then

j = 1,2,... , mv , v = k - n + I,... , k,

which clearly have the support properties (4.5). Now by construction,
/31"'" /3K+n are patently linearly independent, so by Lemma 4.2, {BJ~:t is
a basis for Yp. I

A common situation in which the hypothesis (4.3) of Theorem 4.3 holds
is the case where {Vi}~ is a Tchebycheff system and each Av contains the
point evaluation ex , v = 1,2,... , k. Indeed, in this case for v = 0, 1,... , n - k
the matrix C<Ev+1 -+ 1, Ev+n+1) contains the submatrix Vv+1 = (V,(Xi)~":~;i:V+1
which is rank n by the Tchebycheff property.

With stronger hypotheses on C, a basis for Yp can be found with signifi­
cantly smaller supports. We illustrate this with the following theorem which
deals with the case where each of the sets Av is a Hermite set. We say
Av = {AviJ j;:'l is a Hermite set oflinear functionals with support at Xv provided
"vi = e~:l) for j = 1,2,..., Iv. In this case Cvj = [Lj'_lVl(Xv), ... , L1-lVn(Xv)]T
and Pvi(X) = On_i(X; xv), j = 1,2,... , mv , v = 0, I, ... , k.

THEOREM 4.4. Suppose {Vi}~l is an Extended-Tchebycheff (ET-) system
on [xo , Xk+1]. In addition, suppose for v = 1,2,... , k that Av is a Hermite set
of linear functionals with support at Xv' Then there exists a basis {BJ~;;n for
Yp such that

B.v+i has support on [xv, x,,], j = 1,2,... , mv , v = 0, 1, ... , k, (4.6)

where /L = /L(v,j) = min{w: L:~=v+l mi ~ n - j + I}.

Remark. Let Yl ,... , YK+2n be the nondecreasing ordering of Xo ,... , XO ,

Xl ,..., Xl'"'' Xk , ... , Xk , Xk+1 ,... , Xk+1 , where for each v = 0, 1,... , k + 1, the
number Xv is repeated mvtimes (mk+1 = n). Then the above support properties
can be stated as

Bi has support on [Yi , Y,+nJ, i = 1,2,..., K + n. (4.7)
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Proof Let CK+n+i = Ci ,j = 1,2,... , n. Fix 0 ~ jI ~ k and 1 ~j ~ mv ,

and let 0 E lRn be a solution of

(C,I , C" ,.. " C,Jo = -C'v+J , (4.8)

where (iI' i2 ,... , in) = (Ev + 1,... , Ev + j - 1, EV+l + 1,... , EV+l + n - j + 1).
The matrix of the system (4.8) is nonsingular because it is equivalent (in the
sense of similar matrix representations produced by elementary column
'operations) to

where 1 ~ r" ~ mIL is such that j - 1 + L~::.l+l mi + r" = n. The matrix
(4.9) is nonsingular in view of the ET-property of the {vi}f, while the equiva­
lence of the matrix in (4.8) with (4.9) follows from the fact that

and the fact that Li_1v involves a linear combination of l', ... , r(i-2), (cf. (2.1».
Now the required B-splines are given by

n

B<v+iCx) = p<v+ix) + L o"p,,,(x).
u=l

(In the sum we ignore terms with ilL ?: K + n.) I

5. REMARKS

1. For polynomial splines with Hermite ties at the knots, local support
splines (B-splines) were introduced in 1947, though not published until 1966,
by Curry and Schoenberg [1]. They are obtained by taking appropriate
(confluent) divided differences of the kernel (x - g)~-l/(n - I)!. Using a
form of generalized divided difference, Karlin [11] constructed local support
splines in the case where .AI is spanned by an Extended-Complete-Tchebycheff
(ECT-) system (i.e., .AI is the null space of a differential operator L with
P6lya's property W), and where the A. are Hermite sets. The first local
bases for splines with more general ties were obtained in our earlier paper
[10], where we considered g-splines; i.e., the case where L = D2n and the
A v are Hermite-Birkhoff sets consisting of Hermite sets through order n - 1
coupled with certain higher-order natural boundary functionals.

2. Greville [6] considered a class of splines which is the special case of Y
where A v = {e~~};=02; that is, the splines were forced to be in cn-2 globally.
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Local support bases were not studied there, however. Classes of splines as
general as Y' do not seem to have been dealt with in the literature to date.
Moreover, much of the development here can be carried over to still more
general classes of splines.

3. It should be emphasized that the results here are truly constructive;
i.e., the appropriate matrices can be set up and the coefficients oflocalsupport
splines can be determined computationally. It is clear that Theorems 4.3
and 4.4 lead directly to algorithms. One can also envision algorithms based
on Lemma 4.2 which examine numerically the structure of C, and seek to
obtain a basis for Y'p with small supports.

4. There is no need to review at length the usefulness of local support
bases in applications such as the finite element method, etc. Some applica­
tions are indicated in the papers [2-4; 8-10; 11, Chap. 10; 13-14].

5. The classical (polynomial) B-splines, (and the analogs developed by
Karlin; cf. Remark 6) enjoy a variety of important special properties,
including, for example, the facts that they are positive and that they can be
computed conveniently by recursions (cf. [2]). Unfortunately, many of these
properties are lost for the general case. Thus, for example, the local support
splines constructed here are not usually positive. There remain interesting
open questions as to how to construct local support bases to preserve such
properties. Ferguson [5] has recently investigated the question of when local
support g-splines can be positive.

6. When A v = {ex} in Theorem 4.4, we need only assume that {viE is a
T-system, rather tha~ that it is an ET-system. We should point out that when
{Ui}; form an ET-system (and the Av are Hermite sets as in Theorem 4.4),
the construction of Karlin [11] can be used. Although Karlin's construction
was carried out for {uiK an ECT-system, it is known (Karlin and Studden
[12, p. 242]) that given any ET-system on an interval [a, b], there is an ECT­
system which spans the same space on [a, b). Since Karlin's approach yields
local support bases which are positive (even totally positive; see [11]), it
should be preferred over the construction of Theorem 4.4. We also note
that the construction of Theorem 4.4 is essentially equivalent to that of
Schmidt and Lancaster [14], although they obtained their bases only for the
case where L has constant coefficients. (In that case Vi = Ui , i = 1,2,... , n,
and 8(x; g) is a translation kernel.)

7. Often, one is interested in spaces of splines with special end conditions
(e.g., natural splines, type I splines, etc.) or in periodic splines (where, e.g.,
in the definition of Y'p we identify Xo and Xk+1 and require So = Sk)' Bases for
such spaces of splines are easily obtained from the results of Section 4 by
enforcing the special end conditions, or for the periodic case by slight
modifications of the methods of Section 4.
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8. Let n = 2, L = D2, .AI = {l, x}, and A v = {e~ }i. Then go is the class
of piecewise linear functions with equal slopes in a:il the intervals between
the knots. (The linear pieces are not required to match continuously at the
knots.) It is easily seen that 8ix; g) = (x - g)~ and 0o(x; g) = (x - g)~ .
With each knot we have associated one basic function Pv(x) = (x - xv)~ .
Now if we look at the space gop we see that it is (k + 2)-dimensional and is
spanned by 1, x, and {(x - xV)~};~1' Lemma 3.1 permits the construction
of local support splines; e.g., B(x) = (x - xv)~ - (x - XV+l)~' (Note:
these are a linear combination of only two functions.) There is, however,
no local support basis for gop. Indeed, if a spline sex) vanishes on some inter­
val, then it must have zero slope in all the intervals. Thus no collection of
local support splines can represent x, which is, of course, in gop. The problem
is that

since V1 = -x, V2 = 1, and L 1* = -D.

ApPENDIX

The following result may be known, but we have been unable to find it.

LEMMA. If (2.2) holds, then so does (2.3).

Proof We proceed by induction. For j = n - 1, (2.3) is (2.2). Now
suppose (2.3) holds for j = n - 1, ... ,], where n - 1 ?;:;] ?;:; 1. Differentiating
(2.3) for] yields

n n

- L u?)(x) DL~_J_1vi(x) = L u~k+l)(x)L:_J_1V;(X) .
•~1 ,~1

n n

L uik)(x)L:;_Jv;(x) = L u~k+l)(x)L:_J_1Vi(X) + a!Cx)8k •n - 1 . (a.l)
i~1 i~1

Since 8k J--1 = 8k+1 J' we have proved (2.3) for j =] - 1 and k = 0, 1,...,
, , n-l.

n - 2. Now, for k = n - 1, we substitute u~n)(x) = - Lv=o av(x) u~V)(x) In

(a.l) to obtain

n n n-l

L uin- 1)(x)L:;_Jv;(x) = - L L av(x)u~v)(x)L:_J_1Vi(X) + aJ(x)
i=l i=l v=O

= - aJ(x) + aJ(x) = O.

This completes the induction step and the proof. I
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